

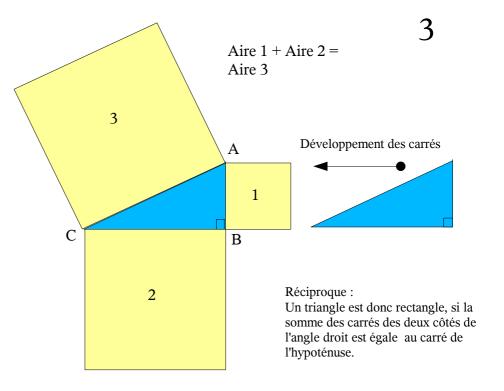

Prisme

Tore

coupe.

Le carré de l'hypoténuse est égal à la sommes des carrés des deux côtés de l'angle droit.

$$==> AC^2 = AB^2 + BC^2$$


D'où

$$AB^2 = AC^2 - BC^2$$

$$AB = \sqrt{AC^2 - BC^2}$$

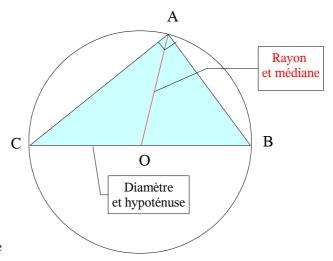
$$CB^2 = \underline{AC^2 - AB^2}$$

$$CB = \sqrt{AC^2 - AB^2}$$

Triangle rectangle

La somme des deux angles aigus d'un triangle rectangle fait 90°

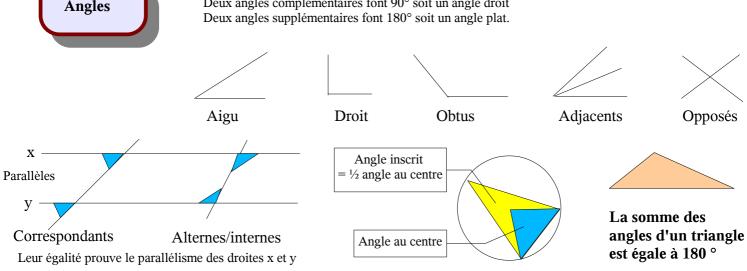
L'hypoténuse d'un triangle rectangle en A est confondue avec le diamètre du cercle circonscrit.


La médiane relative à l'hypoténuse est alors confondue avec le rayon du cercle.

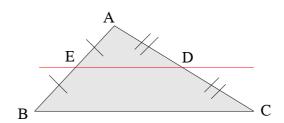
$$AO = OB = OC$$

 $AO = \frac{1}{2}BC$

Réciproque:


Un triangle est donc rectangle

- * si la médiane relative au plus grand côté est égale à la moitié de ce côté.
- * si le plus grand côté est confondu avec le diamètre du cercle circonscrit.



Angles

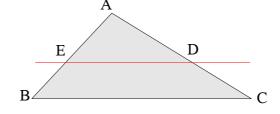
Deux angles complémentaires font 90° soit un angle droit

Droite des milieux

Dans un triangle, si une droite passe par le milieu de deux côtés, elle est parallèle au troisième.

ED // BC

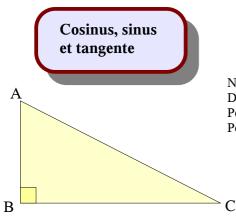
Le segment ED est égal à la moitié du segment BC.


$$ED = \frac{1}{2}BC$$

Corollaire:

Si une droite parallèle à un côté coupe un autre côté en son milieu, alors elle détermine le milieu du troisième côté.

Thalès et proportionnalité


Des parallèles (BC et ED) déterminent sur des sécantes (AB et AC), des segments proportionnels et des angles égaux.

Ainsi
$$\underline{AE} = \underline{AD} = \underline{ED}$$

AB AC BC

$$Et AED = ABC$$
$$ADE = ACB$$

Si sur deux sécantes, les points AEB et ADC sont alignés, et que l'égalité $\underline{AE} = \underline{AD} = \underline{ED}$ soit vérifiée, alors \underline{ED} // \underline{BC} . AB AC BC

Dans l'exemple ci-joint, l'hypoténuse est toujours AC. Pour l'angle A, le côté adjacent est AB, le côté opposé BC. Pour l'angle C, le côté adjacent est BC, le côté opposé AB.

> Truc! Se rappeler Cosadjyp Sinopyp

Le cosinus d'un angle est le rapport du côté adjacent sur l'hypoténuse.

$$Cos A = \underline{AB} \qquad Cos C = \underline{BC}$$

$$AC \qquad AC$$

Le sinus d'un angle est le rapport du côté opposé sur l'hypoténuse.

$$Sin A = \underline{BC}
AC$$

$$Sin C = \underline{AB}
AC$$

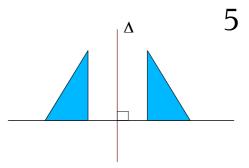
La tangente d'un angle est le rapport du côté opposé sur le côté adjacent, ou le rapport sinus sur cosinus.

Corollaire:

A partir de la distance BC et de la mesure de l'angle C, on peut ainsi trouver la mesure de AB selon la formule

$$AC = \underline{BC}$$

Cos C

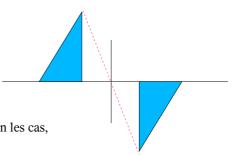

Pythagore permet ensuite de déduire AB selon que AC^2 - BC^2 = AB^2

 $\sqrt{AC^2-BC^2} = AB$

Symétrie orthogonale (ou axiale)

La symétrie orthogonale d'une figure se construit en référence à un axe (médiatrice).

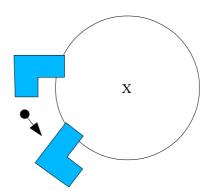
Les figures sont superposables en pliant selon l'axe Δ appelé axe de symétrie.



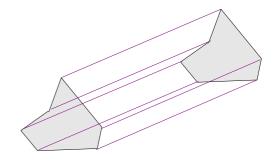
Les angles, aires et longueurs selon les cas, sont égales d'une figure à l'autre.

La symétrie centrale d'une figure se construit en référence à un point (milieu).

Les figures sont superposables par double pliage.



Les angles, aires et longueurs selon les cas, sont égales d'une figure à l'autre.


Déplacement d'une figure sur un cercle

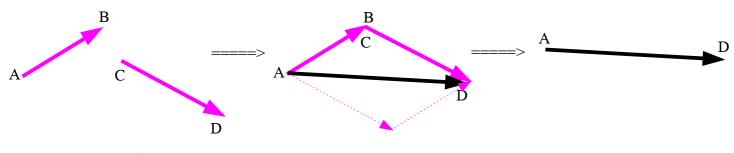
Les angles, aires et longueurs selon les cas, sont égales d'une figure à l'autre.

Translation

Déplacement linéaire d'une figure. Tous les points de celle-ci suivent la même direction, le même sens, et la même distance de déplacement.

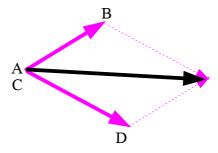
Vecteurs

Le vecteur est un cas particulier de translation d'un point, comportant direction' AA'), sens (de A vers A'), et longueur (AA').



Il se note AA'

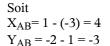
Somme vectorielle


(Relation de Chasles)

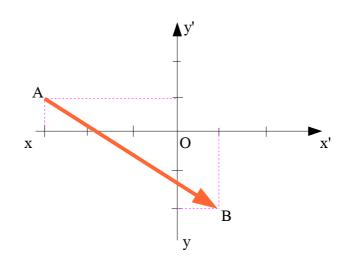
L'addition de deux vecteurs, qui n'a rien à voir avec l'addition ordinaire, utilise le parallélogramme composé des deux vecteurs mis bout à bout, et la diagonale dont la mesure est la somme des deux vecteurs considérés..

Le vecteur AD est la somme des vecteurs AB + CD

Le même calcul peut être fait en positionnant les deux vecteurs à partir d'une origine commune.



Repère orthonormé


Les coordonnées d'un point, d'un segment, d'un vecteur, s'établissent à partir de l'axe des abcisses (xx') puis de l'axe des ordonnées (yy').

Les coordonnées du point A sont (-3, 1) Les coordonnées du point B sont (1, -2)

Considérant le vecteur \overrightarrow{AB} les coordonnées en sont : $X_{AB} = X_B - X_A$ et $Y_{AB} = Y_B - Y_A$

La mesure du vecteur \overrightarrow{AB} consiste donc à appliquer Pythagore $4^2 + (-3^2) = AB^2$ 16 + 9 = 25 $AB^2 = 25$ AB = 5

Index

Angles	р3
Bissectrice	p1
Carré	p1
Cercle	p1
Cercle circonscrit	p3
Cône	p2
Cosinus	p4
Cube	p2
Cylindre	p2
Demi droite	p1
Diamètre	p1
Droite	p1
Droite des milieux	p4
Equilatéral	p1
Hauteur	p1
Hypoténuse	p1
Isocèle	p1
Losange	p1
Médiane	p1
Médiatrice	p1
Parallélogramme	p1
Pavé	p2
Proportionnalité	p4
Pyramide	р т p2
Pythagore	p3
Rayon	р5 р1
Rectangle	р1
Repère orthonormé	рт р6
Rotation	р5
Segment	р5 р1
Sinus	•
Somme vectorielle	p4
	p6
Sphère Symétrie controle	p2
Symétrie centrale	p5
Symétrie orthogonale	p5
Tangente	p4
Thalès	p4
Tore	p2
Translation	p5
Trapèze	p1
Triangle	p1
Triangle rectangle	p1
Vecteur	p1
Vecteurs	p5